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ABSTRACT

A typical (in the sense of Baire category) compact A in E, where E is
either the Euclidean space E*, s > 2, or the separable Hilbert space H,
generates a dense subset C™™(A) of the underlying space, such that
every x € C™™(A) has exactly n nearest and m farthest points from A,
whenever n and m are positive integers satisfying n + m < dimE + 2.

1. Introduction

Throughout, E is either a finite dimensional Euclidean space E* of dimension
dimE® = s > 2, or a separable Hilbert space H, both on the field of reals, with
inner product < -,- > and norm |- |. Every nonempty set A C E generates a
set-valued mapping

Ple.A) = {y € A le — y| = d(e, 4)}
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called metric projection or nearest point mapping, with a distance function
d(e, A) = inf{|e z|: 2 € A}, defined on E. Each y € P(e, A) is called a point {or
element) of best approximation of A from e € E.

Likewise, one defines the metric antiprojection or the farthest point
mapping

Qe A) = {y € A: Ie - yl= fes A)}»

with the farthest distance functionf(e, A) = sup{le — z|: 2 € A}, provided A is
nonempty and bounded.

Denote by K the complete metric space of all nonempty compact subsets of E
endowed with the Pompeiu-Hausdorff metric x. The cardinal number of a set A
will be card A. As usual N stands for the set of all natural numbers.

Let X € K and n,m € N. The sets

(1.1) Lp(X) ={e € E: card P(e, X) = n}
and
(1.2) L%(X) = {e € E: card P(e, X) > n}

are called respectively, n-locus and upper n-locus of the metric projection
generated by X. Similarly, if in (1.1) and (1.2), P(e, X) is replaced by Q(e, X),
and n by m, one obtains the definitions of the m-locus Lg‘(X ) and the upper
m-locus L7 (X) of the metric antiprojection generated by X. Further, the sets

C™™(X) = Lp(X)NLF(X) and C™™(X)=Lp(X)NLZ(X)
are called respectively common (n,m)-locus and upper common
(n, m)-locus, generated by X. Obviously, for any set X € K

cr(x)> | U e x).
1>nji>m

A set A in a complete metric space M is called residual in M if its complement
M\A is of first Baire category in M, i.e., if A contains a dense G subset of M.
If A is residual in M, any element a € A is called “roughly speaking” a typical
element of M.

By classical results established in a more general framework by Stechkin [St],
Edelstein [Ed] and Asplund [As], it is known that for every X € K the sets Lh(X)
and Lg(X) are residual in E. More recently Zamfirescu [Za] has proved that for
a typical X € K (i.e., for every X of a residual subset of ) the set E*\LL(X) is
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dense in E°. De Blasi and Myjak [BM] extended Zamfirescu’s result to infinite
dimensional spaces. For the antiprojection a similar property is also true [Zhl].
Thus for a typical X € K both E\L}(X) and E\L{, (X) are dense in E. However,
each of the latter sets is of first Baire category and so their intersection might
fail to be dense. In this paper it will be shown that this is not the case, and we
prove even more.

In fact, if n,m € N are arbitrary then a typical X € K has upper common
(n, m)-locus C™™ (X ) which is dense in E (Proposition 3.1). Making use of this, a
stronger result is established in both the finite-dimensional case, and the Hilbert
space case, namely, for a typical X € K also the common locus C™™(X) is dense
in E (Theorem 5.3), and this is the first known example of a compactum with
either property.

Also, it turns out for the Euclidean space E®, s > 2, that the common (n, m)-
locus of a typical X € K is empty whenever n + m > s + 2; thus the sequence
of common loci of X produces a finite partition of the space E* on dense sets.
Intersections of common loci of typical compacta varying in the whole space with
affine subspaces of E are also investigated.

For metric projections and antiprojections, the corresponding loci L3 (X) and
LZ(X) have been studied by de Blasi [Bl] and de Blasi and Zamfirescu [BZ]. A
comprehensive discussion of the properties of the maps P(-, X) and Q(-, X), and
additional bibliography, can be found in Singer [Sil], [Si2], and Dontchev and
Zolezzi [DZ]. For further properties about typical compacta, or closed bounded
sets, and the number of nearest or farthest points, see Motzkin, Straus and
Valentine [MSV], Kuz'minykh [Ku], Radul [Ra], Zhivkov [Zh2].

The following theorem, due to Brouwer [Br| and Miranda [Mi] (see also [RM],
p. 171), is used in the sequel:

Brouwer-Miranda Theorem. Let I* C E* be a bounded polyhedron of the
form {x € E*: | < v,z — a > | < t,i=1,...,8} wherea € E5, t > 0,
and v1,...,vs are linearly independent vectors. For i = 1,...,s, let Lii(t) =
{z el <v,,x — a>= 4t} and g,: I* - R be continuous functions such that
g.(z) <0ifzx e L7 (t), g.(z) >0 ifz € LT (t). Then there exists a point & € I*
such that g,(2) =0 foralli=1,...,s.

2. Notation

A point-to-set mapping F: Z — Y with nonempty images, where Z and Y are
topological spaces, is upper semi-continuous at 29 € Z provided for every open
set U D F(z0) there is an open set V C Z, 29 € V, such that U D F(z) whenever
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zeV.

In K, open and closed balls with center X € K and radius r are denoted by
B(X,r) and B[X, ], respectively. In E, open and closed balls with center z € E
are written as B(z,7) and B[z, r]. Further, S(z,r) stands for the sphere with the
same center and radius, and S is the unit sphere, i.e., S = S(8, 1), where 6 is the
origin of E. B is the closed unit ball.

An affine subspace is a translate of a linear subspace (not necessarily closed)
of E, and a hyperplane is a closed affine subspace of codimension one in E.

For a subset X of E, co X stands for the convex hull of X. Given X C E,
denote by span X the minimal subspace of E which contains X, and by lin X,
denote its linear hull, i.e., the minimal affine subspace containing X. Obviously,
lin({#} U X) = span X. For any finite set X = {z1,...,zx} CE, k > 2, define

sep(z1,...,2,) = min{lz, — ;9 #7, i,5=1,...,k}.

If X is finite, X = {z1,..., 2k}, we make use of either X or (x1,...,zx) as
argument of any of the operators: co, lin, span, sep etc.

Any k points zq,...,2x € E are said to be in general position provided
dim lin(z,...,2x) = k — 1. Certainly this is so if, and only if, the vectors
Ty — T1,...,Tx — Zp are linearly independent.

Put [a1,...,ax] = co(ay,...,ax) for a, €E, i =1,... k. This set is a (k — 1)-
dimensional simplex whenever its vertices ay,...,a; are in general position. A
facet (resp. m-dimensional facet) of a simplex A is the convex hull of a sub-
set (resp. subset of m + 1 elements in general position) of its vertices. The
0-dimensional facets are the vertices themselves.

For v € E, as usual, ker v is the kernel of v (v is viewed as a bounded functional),
ie,kerv={z € E: <wv,z>=0}.

3. Compacta with dense upper common (n, m)-locus

PRroPOSITION 3.1: Let H be a closed subspace of E and let n,m € N, n+m — 2
< dim H. Then for a typical X € K the set C™™(X) N H is dense in H.

Proof: The case dim H = 0 is trivial. Let dim H > 1. For h € H and r > 0 set
pm = {X € K: C™™(X) W HNB(h,7) # 0}

and
KM™ = {X € K: C™™(X) N H is dense in H}.
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Suppose D is a countable dense subset of H. Evidently,
(3.1) N N Merckmm.
h€Dr-1¢N

To complete the proof it suffices to show that each set MZ:" on the left side of
(3.1) contains an open dense subset of K. This is a consequence of the following

LEMMA 3.2: Given a compact Ay € K, a closed subspace H C E, dimH > 1,
a point hy € H, positive numbers A, r > 0 and integers n,m € N, n+m — 2
< dim H, there exist A; € K and p > 0 with B(Ay, u) C B(Aq, \), such that for
every X € B(Ay, ) one has

C™™(X) N H N B(hg,r) # 0.

Proof: Without loss of generality assume hg ¢ Ag. Otherwise, take A’ €
B(Ag, A/2) such that hg ¢ A’ and prove the lemma for A’ and A’ = A/2 with hg
and r unchanged. Suppose also hy = 8, i.e., all the coordinates of hy are equal
to 0 in a new coordinate system obtained after translation by — hg.

Take @ € P(6, Ag), b € Q(6, Ag). Let ap and By, 0 < g < 1, By > 1, be chosen
so that the points ag = aga and bg = SByb satisfy

d(a(), A()) < /\/2, d(bo,Ao) < )\/2
Denote by H* the orthogonal complement of H, i.e.,
H ={yekE <y,z>=0,Vze H},

and by m: E — H the orthogonal projection operator onto H (along H*). Our
next goal is to find

(3.2) a, € |ag|S, d(a,, Ag) < A/2, fori=1,...,n—-1,

(3.3) b; € |bolS, d(b],Ao) <A2, forj=1,...,m—1,
such that the vector system
(34) V= {(11 — gy - -y Gn_1 — Ao, bl - b07 . 'vbm—l - b0}7

regarded as a set of functionals acting on H, be linearly independent,
i.e., the set 7V be linearly independent. If n = 1 or m = 1, V is reduced to
{b,—bo:j=1,...,m—1} or {a, —ap: i =1,...,n — 1} correspondingly, and in
case n = m = 1 the proof is simplified.
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Proceed by induction: As H* is a closed proper subspace of E and ag + H* is
nowhere dense in |ag|S, there is a; € |ao|S\(ap + H*) satisfying (3.2) such that
m(a; — ap) is non-zero on H. If n = 1 we start with finding b;.

Assume by induction that aq,...,ax_1 for k < n satisfy (3.2), and #(a, — ap)
for i = 1,...,k — 1 are linearly independent. Certainly, ¥ — 1 < dim H since
m > 1. So, for H,_; = ﬂf;ll ker(a, — ap) N H, its orthogonal complement Hy_,
in E has positive codimension, i.e., H; , # E. Then a¢+ Hj}_, is nowhere dense
in |ao|S and there is ax € |ag|S\(ao+ Hj_,) satisfying (3.2). Since H};_, contains
both a; — ag and w(a, — ag) for i = 1,...,k ~ 1 then n(ax — ag) is independent
to the previously projected vectors.

After finding a,,_1, find b; in a similar way if m > 1. In this case n — 1 <
dim H, and the set bg + HX_; does not cover the sphere |by|S, where H}_; is
defined as above. Hence there is by satisfying (3.3) such that by —bo ¢ H_,, which
entails the linear independence of the latter vector with all a; —ag,t = 1,...,n—1.
We proceed by induction until our goal is reached.

Since @ is the nearest point to ag in Ag, and b is also the nearest point to by
in Ag, it isclear that fori=1,....n—-land j=1,....m—1

(3.5) d(a., Ao) > d(ag, Ao), d(b;, Ao) > d(bo, Ao).

Let

Ay = AgU{ao,a1,-.-,8n-1,b0,b1,...,b;y_1}, G =span(nV)
and 7 > 0 be chosen so that
(3.6) 4n < min{r,sep(ag, - . -,8n-1,b0,-- -, bm-1),d(ao, Ag), d(bo, Ag)}.
Furthermore, for ¢ > 0 denote by I* the “distorted” cube

Gn{zeH:|<a, — apz>|<t i=1,...,n—-1,
f<bj—bo,z>|<t j=1,...,m—1}
and put
LEty={zeI" <a; — ag,z>=+t}, i=1,...,n—1,
ME@t)={z el <bj — bo,z>=*t}, j=1,...,m-1

Since the vectors in (3.4) are linearly independent, I* is a bounded polyhedron
containing # = hg in its relative interior with respect to G and its diameter
vanishes as t — 0. Now fix ¢ > 0 such that

(3.7) It C B(4,n).
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For arbitrary X € B[4i,gjand i =0,...,n—1,j=0,...,m — 1, set
(3.8)  X(a) = X NB[a, 7], X(b,) = X NBb,,n], X = X N(4; +9B).

Since x(X, A1) < n and 7 verifies (3.6), one can easily show, having in mind
(3.5), that the above sets are nonempty, pairwise disjoint, compact and

n—1 m—1
(U x@)U(U xen)Ux =x.
=0 =0
In the next step of the proof one has to find u,
(3.9) 0 < p < min{n, A/2},

such that for every X € B(Ay, )

(3.10) d(h, X (ao)) < d(h, X(a,)) if b€ Ly (t),
(3.11) d(h, X (ap)) > d(h, X (a,)) if h € L}(t),
fori=1,...,n—1, and

(3.12) F(h, X (bo)) < f(h, X (b)) if b € M; (1),
(313) f(hv X(bO)) > f(h1 X(bj)) ifhe M]+(t)’

forj=1,...,m—1.
In order to prove the existence of such u, let X = A;. Then for h € Mji(t),
j=1,...,m—1, one has

F2(h, Ax(bo)) — f2(h, Ar(by)) = |bo — k|2 — |b; — h|?
= 2(b, — bo, h) = £2¢.

Similarly, for h € L;t (t),i=1,...,n—1, it can be shown that
dz(h’»Al(GO)) - d2(h7A1(a’l)) = £2t.

Fori=0,...,n—1,j=0,...,m— 1, the mappings X — X (a;) and X — X (b;)
are continuous, the sets LI (t), M]?t(t) are compact and (3.10)-(3.13) hold true
when X = A, whence there is p verifying (3.9) such that for every X € B(Ay, u)
(3.10)-(3.13) are satisfied.
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Now to prove the statement of the lemma with A; and g obtained above,
observe first that B(A;,p) C B(Ag, A) since x(Ag, 41) < A2 and p < A/2.
Suppose X € B(Ay, u) is arbitrary. It remains to show that

C™(X)NHNB,r) # 0.
Apply the Brouwer-Miranda theorem to the functions

d(h, X(ag)) — d(h, X(a;)), t=1,...,n—1,
F(h, X (bo)) — f(h, X(b;)), 5=1,....m—1,
all defined on I, and obtain a point h € It at which all of them vanish, i.e.,

(3.14) d(h, X (a0)) = d(h, X (a,)), i =1,...,n— 1,

We claim that h € C™™(X). In view of (3.7) and (3.8) one has

d(h, X (a:)) < |h +d(6, X (@) < |ao| + 27, i=0,...,n—1,
d(h, X (b)) > —|h| + d(6, X (,)) > |bo] — 29, j=0,...,m—1,
d(h, X) > —|h| + d(8, X) > |a| — 2n.
As 45 < d(ag, Ao) = |a] — |ao| < |bo| — |ao|, the above inequalities imply
n—1
P(h,X) c | X(a:)
=0
and consequently in view of (3.14) it follows that d(h, X) = d(k, X (a,)), i.e.,
Ph,X)NX(a;)#0 fori=0,...,n— 1.
Similarly,
F(h, X (b;)) 2 f(6,X(b;)) — |h > |bo| — 2n, j=0,...,m—1,
F(h, X (a;)) < (6, X(a:)) + k| < |ao) + 20, i=0,...,n—1,
F(h, X) < £(8,X) + |l < [b] + 2n.

As 4n < d(bg, Ag) = |bo| — |b] < |bo| — |aol, then

C nO X (bj)
j=0
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whence, by (3.15), f(h, X) = f(h, X (b,)), i.e.,
Qh.X)NX(b,) #0 forj=0,...,m—1.

The sets X(a,), X(b;), for i =0,...,n -1, 5 =0,...,m — 1, are pairwise
disjoint which implies

card P(h, X)>n and cardQ(h, X) > m.

Moreover, i € It C GNB(hg, r). Therefore h € C™™(X)NHNB(ho, r) whenever
X € B(Ay, ). The proof is completed. .

Remark 3.3: Proposition 3.1 remains valid if H is an arbitrary affine subspace
of E. This follows by category arguments, after approximating H by a dense
sequence of finite-dimensional affine subspaces contained in H.

4. Geometrical lemma

Suppose A = [a1,...,a5+1] is a s-dimensional simplex in E*. Associate with it
the set A(A), denoted also by A(ay,...,as41), of all e € E? such that:

s+1 s+1
e=Y Xai, > Ai=1 M\ER
i=1 1=1
k
there exist A,,,..., A, 1 <k <s, such that ZA,J =0.
j=1

The set A(A) contains all points in E* which allow that partial sums of their
baricentric coordinates, with respect to A, be equal to 0. Actually, A(A) is
the union of all hyperplanes containing facets (of various dimensions) of A and
parallel to the linear hulls of the remaining vertices. As A(A) is a finite union of
(in fact 2°F! — 2) hyperplanes, it is nowhere dense in E*.

LEMMA 4.1: Let A = [a1,...,a541] C E° be a non-degenerate simplex and
ag € E*\A(A). Then for every j, 1 < j < s+ 1, the simplex

A] = [a()vala vy 51,0541, - - 'aa's+l]

is nondegenerate and ag ¢ A(A) if, and only if, a; ¢ A(A,).

Proof: The statement follows by routine calculations, after representing ag in
barycentric coordinates with respect to A. ]
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LEMMA 4.2: Let A be a non-degenerate simplex in E* and ag ¢ A(A). Suppose
the set of the vertices of A is arbitrarily split in two sets B = {b1,...,b,} and
C={c1,...,cm} such that n > 2, n + m = s + 1. Then the vector system

(41) b2—bl,...,bn—bl,cl—ao,...,cm—ag
ig linearly independent (in fact it is a basis of E? ).
Proof: If m =1 then the definition of A(A) implies (4.1), else denote

(4.2) U={’llli=bi+1—blti=1,...,n—1},

(4.3) VZ{UJ‘:CJ'_H—Cl:jZI,...,m-—l}.

The vectors in (4.2) and (4.3) are independent and so is their union.

Set H = ¢y +span(U U V). The hyperplane H is contained in A(A). Indeed,
if h € H then forsome y, €R,i=1,...,n—-1,and v, €R, j=1,...,m—1, we
have

n—1 m—1
h=c+ Zului + Z Viv;
i=1 7=1

=- (,Ufl +o 4 llln—l)bl + ﬂ1b2 e ll'n—lbn

+(1-v1— —Vp1)a+rvica+ -+ VmaiCm.

Giving b its barycentric coordinates shows that a partial sum of them (first n)
is zero, so h € A(X). Now, since ag € H, the vectors

(4.4) ULy vy Un_1,V1y. -y Um—1,C1 — Qg

are linearly independent. In order to verify the statement of the lemma suppose

n—1 E]
Z Ti(bz'+1 - bl) + ZTz(Cz—n+1 - aO) =0
=1 1=n

for, e R, i=1,...,s, whence

Tiuy + -+ Tpotty_1+ Tng1¥1 + - + TsUp -1 + (Tn + -+ 7'3)(01 - aO) = 07

which, in view of the linear independence of the vectors in (4.4), implies 7, = 0
for i = 1,...,s. Therefore the vectors (4.1) are linearly independent. The proof
is completed. |
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For a finite set A and an integer ¢ > 2, we define £*(A) to be the set of all
couples {B,C} of nonempty subsets of A such that BN C = (} and card B +
cardC = 1.

The next geometrical lemma actually shows that among the finite sets there are
“quite many” of them with empty common (n, m)-locus on subspaces, whenever
n 4+ m is large enough.

LEMMA 4.3: Given a nonempty finite set X C E*, a subspace H C E?, dim H =
k, and a number ¢ > 0, there exists a finite set A, card A > k + 2, such that:
x(A, X) < ¢ and for every {B,C} € £¥+%(A) there exist unique h € H, r; > 0,
r9 > 0, r1 # ry satisfying

(4.5) B=AnS(h,r1), C=ANS(hrs).

Proof: Assume k > 1; as in case k = 0 one can take a finite set A with card A > 2
and x(X, A) < € such that card(A NtS) < 2 whenever ¢ > 0. Let H* stand for
the orthogonal complement of H and let N = {ny,...,ns_x} be a basis of H*.
If k = s then H* = {6} and N = 0. Suppose X = {zy,...,z;} with{ > k + 2,
which is no loss of generality.

Construct A by induction. The first k+1 points {a1,...,ax+1} = A1 are taken
to satisfy |z, — a.| <e,4=1,...,k+ 1, and the points from {(a; + N) U 4, to
be in general position.

Since ny,...,N4_k,as—ay,...,ax+1 —ay are linearly independent, the subspace
G = ﬂle ker{a;11 — a1) is complementary to H. Hence the affine subspace of
all centers of spheres containing Ay, being parallel to G, intersects H at a single
point hg. Thus A; C S(hg, 7o) for some rg > 0.

Next take ag4a such that |zg4o — ags2| < ¢, and

k+1

(4.6) ars2 & (U Alla + M) U 41)) [ JS(ho, o),

=1

which is possible as the union of sets in (4.6) is nowhere dense in E°.
To verify the statement of the lemma at this step, let {B,C} € £¥+2(4,),
where

A2=A1U{ak+2}, B:{bl,...,bn}, CZ{Cl,...,Cm}, n+m==%k+2.

If either card B = 1 or card C = 1, the statement is deduced from (4.6) and
Lemma 4.1 similarly to the way of finding hy. Otherwise, note at first that it
is possible to change the names of B and C, and to reorder their elements if
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necessary, so that b; = a; and ¢,, = ag42, since we have to ascertain only that
there are b € B and ¢ € C satisfying ¢ € A((b+ N)U (42\{c})).
Further, the vectors

(4.7) Niyeoe,Ng_g, b —b1,....bp —b1,01 — Cmy v . s Cne1 — Cm

are linearly independent as a consequence of Lemma 4.2. Therefore, the subspaces

n—1 m—1
G1= [ ker(biy1 — b1), Ga= () ker(c, — cm)
=1 7=1
are independent to ﬂ:;f kern; = H and so is their intersection. However,

dim(G; N G3) = s — k, whence H and G1 N G are complementary subspaces in
E?® and they meet only at 6. Since the centers of the spheres containing B and C
are parallel to G, and G respectively, there exist uniquely determined h € H,
r1 > 0 and ro > 0 satisfying (4.5) with A, instead of A. To check r; # r observe
that, due to (4.6), Ay is not contained in any sphere centered at a point in H.
Note that in the process of constructing the set A, we also order its elements.

Suppose now by induction that for j € N, 2 < j <[ — k there is an ordered
set A; = {a1,...,ak+;} such that the following are true:

lz; —a| <e, i=1,...k+5;

for every {B,C} € £¥*2(4;) there exist unique h € H, r1,73 € R, 11 # 1o
satisfying

(4.8) B=A4,nS(h,r), C=An5(h,ra).

Note that the induction assumption implies that no k£ + 2 points in A, belong
to a sphere centered in H and no k + 3 points from A; are in the union of two
concentric spheres with centers in H.

For every {B,C} € E%*2(4;), denote by U(B,C) the union of the two
concentric spheres which are uniquely determined by (4.8). Now take ax4;+1,

(4.9) |Zkts+1 = @rtjri] <e,

such that with A,1; = A; U {ak4y+1} the following are true:

(4.10) axrin & | J{U(B,C): {B,C} € £5+%(4,)};
for every A’ C Aj, card A’ =k + 1,

(4.11) akri1 € J{A((e+ N)UA):a € A').
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Since the sets in (4.10) and (4.11) are nowhere dense in E°, it is always possible
to find a,41 satisfying (4.9) under the conditions imposed by (4.10) and (4.11).

As in the case j = 1, it can be proved that for {B,C} € £¥t2(A,41) there are
unique h € H, r; > 0 and ro > 0 such that

(412) BC AJ+1 n S(h, 7‘1), C C Aj+1 N S(h, 7‘2).

To observe that 7 # 7o and that the inclusions in (4.12) are actually replaced
by equalities, make use of (4.10). 1

COROLLARY 4.4: For any subspace H of E*, there exists a dense collection Ay
in K of finite sets such that for every A € Ay and h € H one has
card(P(h, A) U Q(h, A)) < dim H + 2.

Proof: As the set of the finite subsets of E® is dense in X, there is a dense set
Ay C K obtained by virtue of Lemma 4.3 so that for A € Ag: No k + 3 points
in 4 belong to a union of two concentric spheres centered in H. |

5. Compacta with dense common (n,m)-locus

PRrROPOSITION 5.1: Let H, dim H = k, be a finite-dimensional subspace of E,
and let n,m € N satisfy n + m = k + 2. Then for a typiccl X € K the set
C™™(X)N H is dense in H.

Proof: Fix hg € H. For R > 0 and € > 0 denote by Mp . the set of all X € K
with the property: If h € Blho, R)N H and card P(h, X) + card Q(h, X) > k + 2,
then for every set W C P(h, X)UQ(h, X) with card W = k+3, one hassep W < «.

CLamM: Mp . contains an open and dense subset of K.

Let Ag € K and A > 0 be arbitrary. It suffices to prove that there exists
A; € K and p > 0 such that

(5.1) B(Al,u) C B(A(),)\)QMR’E.

Take a finite set A’, x(Ao,A’) < A/4 and put H' = span(H U A’). Apply
Corollary 4.4 with respect to H', in the role of the space E°, and H as a subspace
of H', to obtain A; € K, x(A’, A1) < A/4, such that for every h € H

(5.2) card(P(h, A1) U Q(h, A1) < k +2.
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However, (5.2) remains true also in the space E, and x(Ag, A1) < A/2.

Now fix 9, 0 < 2y < min{e,sep A;}. Either map associating with every
(h,X) € H x K the sets P(h, X) and Q(h, X) is upper semi-continuous. Hence
for each h € Blho, R] N H there is §(h) > 0 such that if

X € B(A1,6(h)) and y € B(h,8(h))
then
(53) P(y, X) c P(h’ Al) + B(g’ 7)’ Q(ya X) C Q(h’ Al) + 8(07 7)'

As Blho, R]NH is compact, it is covered by a finite collection of balls B(h;, §(h;)),
i=1,...,L

Take p, 0 < p < min{d(hy),...,8(hi),A/2}. With this choice of p, (5.1)
is fulfilled. In fact, let X € B(A;,p) and, for h € Blho, R]N H, let W C
P(h, X) U Q(h, X) be such that card W = k + 3. Then for some j, 1 < j </,
h € B(h,,d(h;)), and in view of (5.3),

(5.4) W C (P(h,A;) UQ(h, A1) + B(6,7).

However, due to (5.2) and the choice of v, the set on the left side of (5.4) is
contained in a union of a finite number of not more than & + 2 pairwise disjoint
balls. Hence, there are at least two elements, say x,y € P(h, X)UQ(h, X), which
belong to one and the same ball. Then |z — y| < 2y < &, which proves the claim
as (4o, A1) < A/2 and p < A/2. Now set

Krm={X e K:CP™(X)NH isdensein H},
K™ ={X e K:C"™(X)NH is dense in H}.

In view of Proposition 3.1 and the claim, in order to complete the proof, it suffices
to observe that

OO N Mee) ckmm

ReNg-1eN

Remark 5.2: It is proved in the previous proposition that for typical X € K
the set C™™(X) N H is empty, provided n +m > dim H + 3 and H is finite-
dimensional.

The next theorem summarizes the main results in the paper:
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THEOREM 5.3: Suppose E, dimE > 2, is either a finite-dimensional Euclidean
space or a separable Hilbert space H, and H is an affine subspace of E. Then
for every n,m € N such that n + m — 2 < dim H, and every typical compact
set X € K, the set C™™(X) N H is dense in H. Moreover, if H is of finite
dimension, dim H = k and n+m > k + 2, then for a typical compact X € K the
upper common locus C™™(X) does not meet H, thus X induces a partition of
H, by means of its common loci, into a finite sequence of dense sets C*?(X)NH,
i+7=2,...,k+2.

Proof: Let nym € N, n+m — 2 < dimH, and let (H;)2, be a sequence of
affine subspaces of H, all of dimension n +m — 2, such that Ufil H, is dense in
H. Simple observations show that Proposition 5.1 is true for the affine subspaces,
thus for each H; obtain a residual set ;"™ of compacta so that for every X €
K™ the set C™™(X) N H; is dense in H;. Then K™ = (72, Ki"™ is residual
in K and for every X € K™ the set C™™(X) is dense in H. Finally, put

ICHzﬂ{IC’;I’m: n,meNn+m—2<dimH}.

Every X € Ky satisfies the conclusion of the theorem, the set Ky being residual
in K. For the second part of the theorem, refer also to Remark 5.2. |

Assigning in Theorem 5.3 m = 1 or n = 1 respectively, one obtains as corollaries
results about common loci L(X)and LE(X) of typical compacta X € K:

COROLLARY 5.4: With H and E as in Theorem 5.3 and n < dim H+1 (resp. m <
dim H + 1), for a typical compact X € K the set Ls(X) N H (resp. LH(X)NH)
is dense in H. If in addition H is finite-dimensional, dim H = k, then also
LEP(X) N H (resp. LE(X) N H) is empty, hence a typical compact X € K
induces a partition of H into a finite sequence of dense disjoint sets: L% (X)NH,
i=1,...;k+1 (resp. LL(X)NH, j=1,....,k+1).

Although the metric projection part of Corollary 5.4 is essentially contained in
[BZ], this corollary brings new information for both finite-dimensional Euclidean
spaces and infinite-dimensional separable Hilbert spaces.

A natural question to ask is about the validity of some of the above results in
spaces more general than Hilbert spaces. One could expect this is the case, at
least for separable uniformly convex Banach spaces. A hint to that might be the
reference [BZh)]. Also, it seems to us that common (2, 2)-loci of typical compacta
should be dense in any separable strictly convex Banach space.
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