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ABSTRACT 

A typical (in the sense of Baire category) compact A in E, where E is 

either the Euclidean space E 8 , s > 2, or the separable Hilbert space H, 

generates a dense subset cn'm(A) of the underlying space, such that  

every x C Ca're(A) has exactly n nearest and m farthest  points from A, 

whenever n and m are positive integers satisfying n + m < d i m e  + 2. 

1. I n t r o d u c t i o n  

Throughout ,  E is either a finite dimensional  Euclidean space E 8 of d imension 

d i m e  8 = s _> 2, or a separable Hilbert space N, both on the field of reals, with  

inner product < . , .  > and norm I" I. Every nonempty  set A c E generates a 

set-valued mapping 

P ( e , A )  = {y  E A: le - y] = d ( e , A ) }  
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called m e t r i c  p r o j e c t i o n  or n e a r e s t  po in t  map p in g ,  with a distance function 

d(e, A) = inf{ie z]: z E A}, defined on E. Each y E P(e, A) is called a point (or 

element) of best approximation of A from e C E. 

Likewise, one defines the m e t r i c  a n t i p r o j e c t i o n  or the f a r t h e s t  p o in t  

m a p p i n g  

Q(e,A) = {y e A: I e - y[ = f (e ,A)} ,  

with the farthest distance functionf(e, A) = suP{ie - z]: z E A}, provided A is 

nonempty and bounded. 

Denote by )~ the complete metric space of all nonempty compact subsets of E 

endowed with the Pompeiu-Hausdorff metric X. The cardinal number of a set A 

will be card A. As usual N stands for the set of all natural numbers. 

Let X C K: and n , m  c N. The sets 

(1.1) L~p(X) = {e e E: cardP(e,X) = n} 

and 

(1.2) ] ,~(X) = {e E E: cardP(e,X) >_ n} 

are called respectively, n- locus and u p p e r  n- locus of the metric projection 

generated by X. Similarly, if in (1.1) and (1.2), P(e, X) is replaced by Q(e, X), 
and n by m, one obtains the definitions of the m-locus  L~(X) and the u p p e r  

m-locus  L ~ ( X )  of the metric antiprojection generated by X. Further, the sets 

Ca're(X) = Lap(X) N L'~(X) and C'~'m(x) = L~,(X) M L'~(X) 

are called respectively c o m m o n  (n, m)- locus  and u p p e r  c o m m o n  

(n, m)-locus,  generated by X. Obviously, for any set X C/C 

C"'m(X) D [_J U c"J(x). 
z~_n 3~_rn 

A set A in a complete metric space M is called residual in M if its complement 

M\A is of first Baire category in M, i.e., if A contains a dense G5 subset of M. 

If A is residual in M, any element a E A is called "roughly speaking" a t y p i ca l  

element of M. 

By classical results established in a more general framework by Stechkin [St], 

Edelstein [Ed] and Asplund [As], it is known that for every X C )~ the sets L~p(X) 
and L~(X) are residual in E. More recently Zamfirescu [Za] has proved that for 

a typical X E ]C (i.e., for every X of a residual subset of ]C) the set ES\L~(X)  is 
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dense in E 8. De Blasi and Myjak [BM] extended Zamfirescu's result to infinite 

dimensional spaces. For the antiprojection a similar property is also true [Zhl]. 

Thus for a typical X E )E both E \L  I ( X )  and E \L~  (X) are dense in E. However, 

each of the latter sets is of first Baire category and so their intersection might 

fail to be dense. In this paper it will be shown that this is not the case, and we 

prove even more. 

In fact, if n, rn E N are arbitrary then a typical X E ~ has upper common 

(n, m)-locus c n ' m ( x )  which is dense in E (Proposition 3.1). Making use of this, a 

stronger result is established in both the finite-dimensional case, and the Hilbert 

space case, namely, for a typical X E )U also the common locus c n ' m ( x )  is dense 

in E (Theorem 5.3), and this is the first known example of a compactum with 

either property. 

Also, it turns out for the Euclidean space E 8, s >_ 2, that the common (n, rn)- 

locus of a typical X E K~ is empty whenever n + m > s + 2; thus the sequence 

of common loci of X produces a finite partition of the space E s on dense sets. 

Intersections of common loci of typical compacta varying in the whole space with 

affine subspaces of E are also investigated. 

For metric projections and antiprojections, the corresponding loci L ~ ( X )  and 

L ~ ( X )  have been studied by de Blasi [B1] and de Blasi and Zamfirescu [BZ]. i 

comprehensive discussion of the properties of the maps P(. ,  X)  and Q(., X),  and 

additional bibliography, can be found in Singer [Sil], [Si2], and Dontchev and 

Zolezzi [DZ]. For further properties about typical compacta, or closed bounded 

sets, and the number of nearest or farthest points, see Motzkin, Straws and 

Valentine [MSV], Kuz'minykh [Uu], Radul [Ra], Zhivkov [Zh2]. 

The following theorem, due to Brouwer [Br] and Miranda [Mi] (see also [RM], 

p. 171), is used in the sequel: 

B r o u w e r - M i r a n d a  T h e o r e m .  Let  I t C E s be a bounded polyhedron o f  the 

form {x E E~: [ < v~,x - a > [ _< t , i  = 1 , . . . , s }  where a E E ~, t > O, 

and v l , . . . ,  vs are linearly independent  vectors. For i = 1 , . . . ,  s, let Lib(t) = 

{x  E It: < v~, x a >=  i t )  and g~: I t --~ R be continuous functions such that 

g,(x) < 0 i f  x E L~( t ) ,  g~(x) > 0 i f  x E i + ( t ) .  Then there exists a point  :~ E I t 

such that g,(k)  = 0 for all i = 1 , . . . ,  s. 

2. N o t a t i o n  

A point-to-set mapping F: Z -+ Y with nonempty images, where Z and Y are 

topological spaces, is upper semi-continuous at z0 E Z provided for every open 

set U D F(zo)  there is an open set V C Z, z0 E V, such that U ~ F ( z )  whenever 
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z E V .  

In 1E, open and closed balls with center X E K: and radius r are denoted by 

B ( X ,  r) and B[X, r], respectively. In E, open and closed balls with center x E E 

are written as B(x, r) and B[x, r]. Further, $(x, r) stands for the sphere with the 

same center and radius, and S is the unit sphere, i.e., S = S(0, 1), where 0 is the 

origin of E. B is the closed unit ball. 

An affine subspace is a translate of a linear subspace (not necessarily closed) 

of E, and a hyperplane is a closed affine subspace of codimension one in E. 

For a subset X of E, co X stands for the convex hull of X. Given X C E, 

denote by s p a n X  the minimal subspace of E which contains X,  and by l inX,  

denote its linear hull, i.e., the minimal affine subspace containing X. Obviously, 

lin({0} U X)  = spanX.  For any finite set X = {Xl , . . . , xk}  C E, k >_ 2, define 

s e p ( x l , . . . , x k )  = min{Ix, - x3l: i # j ,  i , j  = 1 , . . . , k } .  

If X is finite, X = {x i , . . . ,Xk} ,  we make use of either X or ( x i , . . . , x k )  as 

argument of any of the operators: co, lin, span, sep etc. 

Any k points x i , . . . , x k  E E are said to be in general position provided 

dim l i n ( x i , . . . , x k )  = k - 1. Certainly this is so if, and only if, the vectors 

x2 - X l , . . . ,Xk  -- x i  are linearly independent. 

Put  [ a i , . . . , a k ]  = e o ( a l , . . . , a k )  for a, E E, i = 1 , . . . , k .  This set is a ( k -  1)- 

dimensional simplex whenever its vertices a l , . . . ,  ak are in general position. A 

facet (resp. m-dimensional facet) of a simplex A is the convex hull of a sub- 

set (resp. subset of m + 1 elements in general position) of its vertices. The 

0-dimensional facets are the vertices themselves. 

For v E E, as usual, ker v is the kernel of v (v is viewed as a bounded functional), 

i . e . , k e r v = { x E E :  < v , x > = 0 } .  

3. C o m p a c t a  w i t h  d e n s e  u p p e r  c o m m o n  (n ,m) - locus  

PROPOSITION 3.1: Let  H be a closed subspace o r e  and let n, m E N, n + m - 2 

<_ d i m H .  Then for a t yp i ca I  X E/E the set C " ' m ( X )  M H  is dense in H.  

Proo~ The case dim H = 0 is trivial. Let dim H _> 1. For h E H and r > 0 set 

M[:7  = {x e Ic: 5",re(x) n H vi B(h, r) ~ 0} 

and 

/~,~,m = {X E /E: C" 'm(X)  M H is dense in H}.  
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Suppose D is a countable  dense subset  of H .  Evidently,  

(3.1) N N M :r C 
h E D r - I E H  

To complete  the proof  it suffices to show tha t  each set .A~hl ~ on the left side of 

(3.1) contains an open dense subset  of K:. This  is a consequence of the following 

LEMMA 3.2: Given a compact Ao E IC, a closed subspace H C E, d i m H  > 1, 

a point ho E H, positive numbers A, r > 0 and integers n, m r N, n + m - 2 

< d i m H ,  there exist A1 C l~ and # > 0 with B(AI ,#)  C B(Ao,&), such that for 

every X E B(A1, #) one has 

Ca ' r e (X)  M H O B(ho, r) r 0. 

Proo~ Withou t  loss of generali ty assume ho r Ao. Otherwise,  take A ~ C 

B(Ao, A/2) such tha t  ho r A' and prove the l e m m a  for A' and A' = A/2 with ho 

and r unchanged.  Suppose also ho = 0, i.e., all the coordinates  of ho are equal 

to 0 in a new coordinate  sys tem obta ined after  t rans la t ion by - ho. 

Take ~ C P(O, Ao), b E Q(~, Ao). Let ao and rio, 0 < ao < l,/3o > 1, be chosen 

so tha t  the points  ao = ao~ and bo =/3oh satisfy 

d(ao, Ao) < A/2, d(bo, Ao) < A/2. 

Denote  by H* the or thogonal  complement  of H ,  i.e., 

H * = { y E E :  < y , x > = 0 , V x c H } ,  

and by u: E -+ H the or thogonal  project ion opera tor  onto H (along H*) .  Our  

next goal is to find 

(3.2) a,  �9 laolS, d(a,, Ao) < / V 2 ,  for i = 1 , . . . , n -  1, 

(3.3) bj E [boI S, d(b~,Ao) < ~ / 2 ,  f o r j = l , . . . , m - 1 ,  

such tha t  the vector  sys tem 

(3.4) V = {al - a o , . . . , a n _ l  - ao, bl - b o , . . . , b m - 1  - bo}, 

regarded as a set of functionals act ing on H ,  be linearly independent ,  

i.e., the set r V  be linearly independent .  If  n = 1 or m -- 1, V is reduced to 

{b 3 - bo: j = 1 . . . .  , m -  1} or {a, - ao: i = 1 , . . . , n -  1} correspondingly,  and in 

case n = m = 1 the proof  is simplified. 
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Proceed by induction: As H* is a closed proper  subspace of E and ao + H* is 

nowhere dense in [aolS, there is a l  E [aolS\(ao + H*)  sa%isfying (3.2) such t ha t  

;r(al  - ao) is non-zero on H .  If  n = 1 we s ta r t  with finding bl. 

Assume by induction tha t  a l , . . . ,  ak-1  for k < n satisfy (3.2), and ~r(a~ - ao) 

for i = 1 , . . . ,  k - 1 are l inearly independent .  Certainly,  k - 1 < d i m H  since 
k - 1  m _> 1. So, for Hk-1  = Ni=l  ker(a~ - ao) n H ,  its or thogonal  complement  H~_I  

in E has posit ive codimension, i.e., H~_ 1 r E. Then  ao + H~_ 1 is nowhere dense 

in laolS and there is ak E [aoIS\(ao+H~_l)  satisfying (3.2). Since H~_ 1 contains 

bo th  ai - ao and r(a~ - ao) for i = 1 , . . . ,  k - 1 then 7r(ak - ao) is independent  

to the previously projected vectors.  

After  finding a n - l ,  find bl in a similar way if m > 1. In this case n - 1 < 

d i m H ,  and the set  bo + H * _ I  does not  cover the sphere [bolS, where H * _  1 is 

defined as above. Hence there is bl satisfying (3.3) such tha t  bl -bo  r H*_D which 

entails the linear independence of the la t ter  vector  with all a i - a o ,  i = 1 , . . . ,  n - 1 .  

We proceed by induction until our goal is reached. 

Since ~ is the nearest  point  to ao in Ao, and b is also the nearest  point  to bo 

in Ao, it is clear t ha t  for i = 1 , . . . ,  n - 1 and j = 1 , . . . ,  m - 1 

(3.5) d(a~, Ao) >_ d(ao, Ao), d(bj, Ao) >_ d(bo, Ao). 

Let 

A1 = Ao t2 {ao, a l , . . . ,  a n - l ,  bo, b l , . . . ,  b i n - l } ,  G = span(~V)  

and y > 0 be  chosen so tha t  

(3.6) 4~ < min{r ,  s e p ( a o , . . . ,  an - l ,  b o , . . . ,  bin-l) ,  d(ao, Ao), d(bo, Ao)}. 

Fur thermore ,  for t > 0 denote  by I t the "distorted" cube 

G n { x E  H: l < a ~ - ao, x > l < t , i = l , . . . , n - 1 ,  

I < bj - bo,x > l < t  , j =  l , . . . , m - 1 }  

and put  

L~( t )  = {x  C It: < a~ - ao, x >= +t} ,  i = l , . . . , n - 1 ,  

M ~ ( t )  = {x  E It: < bj - bo, x >= -t-t}, j = l , . . . , m - 1 .  

Since the vectors in (3.4) are linearly independent ,  I t is a bounded  polyhedron  

containing 0 = ho in its relative interior with respect  to G and its d iameter  

vanishes as t ~ 0. Now fix t > 0 such tha t  

(3.7) I t C B(0,~7). 
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For arb i t rary  X E 13[A1,71] and i = 0 , . . .  , n  - 1, j = 0 , . . . , m  - 1, set 

(3.8) X(a,)  : X M B[a,, 7/], X(b3) = X C1 B[b~, 'l], J(  : X N (A1 + ,1S). 

Since x (X ,  A1) <_ 71 and 7/verifies (3.6), one can easily show, having in mind 

(3.5), tha t  the above sets are nonempty,  pairwise disjoint, compact  and 

n--1 m--1 

(U U(U = 
~=0 j = 0  

In the next step of the proof  one has to find #, 

(3.9) 0 < # < min{T/, )~/2}, 

such tha t  for every X E B(A1, #) 

(3.10) d(h,X(ao)) < d(h,X(a~)) i f h  E L•(t), 

(3.11) d(h, X(ao)) > d(h, X(a,))  

for i = 1 , . . . , n -  1, and 

(3.12) I(h,  X(bo)) < f (h ,  X(bj))  

(3.13) f (h ,  X(bo)) > f (h ,  X(bj)) 

if h E L+(t), 

if h E M~-(t), 

if h C M +( t ) ,  

Similarly, for h E L/=k (t), i = 1 , . . . ,  n - 1, it can be shown that  

d2(h, Al(ao)) - d2(h, Al(a~)) = +2t. 

For i = 0 , . . . ,  n - 1, j = 0 . . . . .  m - 1, the mappings X --+ X(ai)  and X --+ X(bj)  
are continuous, the sets Lib(t), M~:(t) are compact  and (3.10) (3.13) h o l d  true 

when X = A1, whence there is # verifying (3.9) such tha t  for every X ~ B(A1, #) 
(3.10) (3.13) are satisfied. 

f2(h, Al(bo)) - f2(h, Al(b3))= Ib0 - hl 2 - I b j  - hi 2 

= 2(bj - bo, h) = +2t. 

for j = 1 , . . . , m -  1. 

In order to prove the existence of  such #, let X = At.  Then for h E M~:(t), 
j = 1 , . . . , m -  1, one has 
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Now to prove the statement of the lemma with A1 and # obtained above, 

observe first that B(AI,#)  c B(Ao, A) since x(Ao, A1) < ,V2 and # < A/2. 

Suppose X C B(A1, #) is arbitrary. It remains to show that 

~'~,m(x) n H N B(0, r) ~4 0. 

Apply the Brouwer-Miranda theorem to the functions 

d(h,X(ao)) - d(h,X(ai)) ,  i = 1 , . . . , n -  1, 

f (h ,X(bo))  - f ( h ,Z (b j ) ) ,  j = 1 , . . . , m -  1, 

all defined on I t, and obtain a point h E I t at which all of them vanish, i.e., 

(3.14) d(h,X(ao)) = d(h ,Z(a, ) ) ,  i = 1 , . . . , n -  1, 

(3.15) S(tt, X(bo)) = S(t~, X(bj)),  j = 1 , . . . ,  m - 1. 

We claim that h E C'~'m(x). In view of (3.7) and (3.8) one has 

d(h, X(ai))  <_ Ihl + d(O, X(a,))  < lad + 2~, i = o , . . . ,  n - 1, 

d(h,X(b3)) >_ -Ihl+d(O,X(b~)) > Ib01- 2~, j = 0 , . . . , m - 1 ,  

d(h,X) >_ -Ihl +d(O,X) > lal- 2,1. 

A s  4,7 < d(ao, Ao) = lal - laol < Ibol - laol,  t h e  a b o v e  inequalities imply 
n--1  

P ( h , X )  C U X(ai) 
4=0 

and consequently in view of (3.14) it follows that d(h, X)  = d(h, X(a~)), i.e., 

P(tt, X)  n X ( a i ) ~ O  f o r i = O , . . . , n - 1 .  

Similarly, 

f(h,X(b~))>f(O,X(b~))- Ih I > l b o l - 2 , ~ ,  j - - 0 , . . . , m - 1 ,  

f ( h ,X (a i ) )  < f (O ,X(a i ) )+  Ihl < laol +2~, i - - o , . . . , n -  1, 

f(h, X) < f(O, X)  + Ihl < Ibl + 2,7. 

A s  4,1 < d(bo,  Ao)  --  Ibol - Ibl < Ibol - l a d ,  t h e n  

m - 1  

Q(h,X) c U X(b3) 
j=O 
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whence, by (3.15), f(]~, X)  = f(h,  X(b3) ), i.e., 

Q(h ,X)  n X ( b j )  #O  f o r j = 0 , . . . , m - 1 .  

The sets X(a,) ,  X(b3) , for i = 0 , . . . , n -  1, j = 0 , . . . , m -  1, are pairwise 

disjoint which implies 

cardP(] t ,X)  >_ n and cardQ(h,X)  _> m. 

Moreover, tt E I t C GN B(ho, r). Therefore h E c n ' m ( x ) A  HN B(ho, r) whenever 

X E B(A1, #). The proof is completed. | 

Remark 3.3: Proposition 3.1 remains valid if H is an arbitrary affine subspace 

of E. This follows by category arguments, after approximating H by a dense 

sequence of finite-dimensional affine subspaces contained in H. 

4. G e o m e t r i c a l  l e m m a  

Suppose A = [ a l , . . . ,  a8+1] is a s-dimensional simplex in E s. Associate with it 

the set A(A), denoted also by A ( a l , . . . ,  as+l), of all e E E s such that: 

s + l  s + l  

i= l  ~=I 

k 

there exist A~l,...,A,k, 1 < k < s, such that E A b  = 0. 
j = l  

The set A(A) contains all points in E s which allow that partial sums of their 
baricentric coordinates, with respect to A, be equal to 0. Actually, A(A) is 

the union of all hyperplanes containing facets (of various dimensions) of A and 

parallel to the linear hulls of the remaining vertices. As A(A) is a finite union of 
(in fact 2 s+l - 2) hyperplanes, it is nowhere dense in E s. 

LEMMA 4.1: Let A = [al, . . . ,as+l] C E s be a non-degenerate simplex and 

a0 E ES\A(A). Then for every j ,  1 <_ j < s + 1, the simplex 

Aj = [a0, a l , . . . , a j - l , a 3 + l , . . . , a s + l ]  

is nondegenerate and ao • A(A) is and only if, a 3 ~ A(Aj). 

Proof'. The statement follows by routine calculations, after representing a0 in 

barycentric coordinates with respect to A. | 
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LEMMA 4.2: L e t  A be  a n o n - d e g e n e r a t e  s i m p l e x  in ~2 a n d  ao ~ A(A). S u p p o s e  

t h e  set o f  t he  ve r t i ce s  o f  A is a r b i t r a r i l y  sp l i t  in  t w o  s e t s  B = { b l , . . . ,  b,~} a n d  

C = { c l , . . .  ,Cm} such  t h a t  n >_ 2, n + m = s + 1. T h e n  t he  v e c t o r  s y s t e m  

(4.1) 52 - bl , . . . , bn - bl ,  Cl - ao, . . . , Cm - ao 

is l i n e a r l y  i n d e p e n d e n t  (in f ac t  i t  is a basis  of  ES). 

Proof ' .  If  m = 1 then the definition of A(A) implies (4.1), else denote 

(4.2) U : {ui : bi+l - bl: i : 1 , . . . , n -  1}, 

(4.3) V = { v j  = c j + l  - c1: j = 1 , . . . , m -  1}. 

The vectors in (4.2) and (4.3) are independent and so is their union. 

Set H -- Cl + span(U U V). The hyperplane H is contained in A(A). Indeed, 

i f h e H t h e n f o r s o m e # , E ] R , i = l , . . . , n - l ,  a n d v  3 E R ,  j = l , . . . , m - l ,  we 

have 

n--1 m--i 

i = 1  3 = 1  

= -- (#1 + "'" + #n-1)b l  + # l b ~ " "  + # , - l b n  

+ (1 - Vl . . . . .  Vm--1)Cl -t- UlC2 + ' ' "  -t- Vm-lem.  

Giving h its barycentric coordinates shows that  a partial sum of them (first n) 

is zero, so h C A(X) .  Now, since a0 ~ H,  the vectors 

(4.4) u l ,  . . . , U n - 1 ,  V l ,  . . . , V r n - - 1 ,  e l  - -  a o  

are linearly independent.  In order to verify the s ta tement  of the lemma suppose 

n - - 1  s 

Ti(bi+l -- b l )  + ~ 7z(C~-n+l -- ao) = 0 

z = l  z----n 

for T, E ]~, i = 1 , . . . ,  s, whence 

T l U l  -~- �9 �9 �9 - ] -  T n - - l U n - - 1  -}- T n + l V  1 J r - ' ' '  -~- T s V r n - - 1  -'~ ( T n  -t- " " " -1- T s ) ( C l  - -  a o )  = O, 

which, in view of the linear independence of the vectors in (4.4), implies r~ = 0 

for i = 1 , . . . ,  s. Therefore the vectors (4.1) are linearly independent.  The proof  

is completed. | 
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For a finite set A and an integer i > 2, we define E~(A) to be the set of all 

couples {B, C} of nonempty subsets of A such that  B A C = 0 and card B + 

card C = i. 

The next geometrical lemma actually shows that  among the finite sets there are 

"quite many" of them with empty common (n, m)-locus on subspaces, whenever 

n + m is large enough. 

LEMMA 4.3: Given a n o n e m p t y  finite set X C E ~, a subspace H C E ~, d i m H  = 

k, and a number  e > 0, there exists a finite set A, card A _> k + 2, such that: 

x ( A ,  X )  < ~ and for every {B, C} E s there exist unique h E H,  rl > O, 

r2 > O, rl  ~ r2 satisfying 

(4.5) B = A A S ( h ,  r l) ,  C = A A S ( h ,  r2). 

Proof'. Assume k > 1; as in case k = 0 one can take a finite set A with card A _> 2 

and x ( X ,  A) < c such that  card(A A tS) < 2 whenever t > 0. Let H* stand for 

the orthogonal complement of H and let N -- { n l , . . . ,  ns-k} be a basis of H*. 

If k -- s then H* = {0} and N = 0. Suppose X = { x l , . . . , x l }  with l > k + 2, 

which is no loss of generality. 

Construct A by induction. The first k + l  points { a l , . . . ,  a k + l }  --= A1 are taken 

to satisfy Ix~ - a~ I < e, i = 1 , . . . , k  + 1, and the points from (hi + N)  U A~ to 

be in general position. 

Since n l , . . . ,  ns-k,  a2 - h i , . . . ,  ak+l --al  are linearly independent, the subspace 
k 

G -- N~=I ker(a~+l - hi) is complementary to H.  Hence the affine subspace of 

all centers of spheres containing A1, being parallel to G, intersects H at a single 

point ho. Thus A1 C S(ho, to) for some ro > 0. 

Next take ak+2 such that  Ixk+2 - a k + 2 1  < ~, and 

k-t-1 

( U  + u ro/, 

which is possible as the union of sets in (4.6) is nowhere dense in E s. 

To verify the statement of the lemma at this step, let {B, C} E Ek+2(A2), 

where 

A2 = A1 U {ak+2}, B = {b l , . . . ,  bn}, C = {Cl , - . . ,  era}, n + m = k + 2. 

If either c a rdB  = 1 or c a rdC  = 1, the statement is deduced from (4.6) and 

Lemma 4.1 similarly to the way of finding h0. Otherwise, note at first that  it 

is possible to change the names of B and C, and to reorder their elements if 
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necessary, so that bl = al and Cm = ak+2, since we have to ascertain only that 

there are b e B and c �9 C satisfying c r h((b + N)  U (A2\{c})). 

Further, the vectors 

(4.7) n l ,  �9 � 9  ns-k, b2 - b l , . . . ,  b~ - bl, cl - Cm,. . . ,  cm-1 - Cm 

are linearly independent as a consequence of Lemma 4.2. Therefore, the subspaces 

n--1 m--1 

~ 1  : N ker(b~+l - b 0 ,  G2 = N ker(c3 - cm) 
z=l 3=1 

s - k  are independent to N~=i kern/ = H and so is their intersection. However, 

dim(G1 n G2) = s - k, whence H and Gi N G2 are complementary subspaces in 

E s and they meet only at 8. Since the centers of the spheres containing B and C 

are parallel to G1 and G2 respectively, there exist uniquely determined h �9 H,  

r i  > 0 and r2 > 0 satisfying (4.5) with A2 instead of A. To check ri  ~ r2 observe 

that, due to (4.6), A2 is not contained in any sphere centered at a point in H.  

Note that in the process of constructing the set A2 we also order its elements. 

Suppose now by induction that for j �9 N, 2 _< j < l - k there is an ordered 

set Aj = { h i , . . . ,  a k + j }  such that the following are true: 

I x i - a ~ [ < E ,  i = l , . . . , k + j ;  

for every { B , C }  �9 $k+2(Aj) there exist unique h �9 H,  ri,r2 �9 R, rl ~ r2 

satisfying 

(4.8) B = A j A h ( h ,  r l ) ,  C = A  3NS(h, r2) .  

Note that the induction assumption implies that no k + 2 points in A 3 belong 

to a sphere centered in H and no k + 3 points from Aj are in the union of two 

concentric spheres with centers in H. 

For every { B , C }  �9 Ek+2(Aj), denote by U(B,C)  the union of the two 

concentric spheres which are uniquely determined by (4.8). Now take ak+3+i, 

(4.9) IXk+j+i -- ak+j+il < ~, 

such that with A~+l = Aj U { a k + 3 + l }  the following are true: 

(4.10) ak+j+l • U { U ( B ,  C): {B, C} �9 Ek+2(A~)}; 

for every A' C Aj,  card A' = k + 1, 

(4.11) ak+j+l r U{A( (a  + N) O A'): a �9 A'}. 
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Since the sets in (4.10) and (4.11) are nowhere dense in E ~, it is always possible 

to find a3+1 satisfying (4.9) under the conditions imposed by (4.10) and (4.11). 

As in the case j = 1, it can be proved that for {B, C} E s there are 

unique h E H, r l  > 0 and r 2 > 0 such that 

(4.12) B C Aa+l N S(h, r l ) ,  C C Aj+I V~ S(h, r2). 

To observe that r l  r r2 and that the inclusions in (4.12) are actually replaced 

by equalities, make use of (4.10). I 

COROLLARY 4.4: For any subspace H o r e  s , there exists a dense collection r 

in IC of finite sets such that for every A E AH and h E H one has 

card(P(h,  A) U Q(h, A)) <_ d i m H  + 2. 

Proo~ As the set of the finite subsets of E 8 is dense in ~,  there is a dense set 

.AH C /C obtained by virtue of Lemma 4.3 so that for A E AH: No k + 3 points 

in A belong to a union of two concentric spheres centered in H. I 

5. C o m p a c t a  w i t h  d e n s e  c o m m o n  (n ,m)- locus  

PROPOSITION 5.1: Let H, d i m H  = k, be a finite-dimensional subspace of]E, 

and let n , m  E N satisfy n + m = k + 2. Then for a typicel X E IC the set 

c n ' m ( x )  M H is dense in H. 

Proo~ F i x h 0 E H .  F o r R > 0 a n d e > 0 d e n o t e b y M a , e  the set of a l l X E K :  

with the property: If h E 8[h0, R] M H and card P(h, X )  + card Q(h, X )  > k + 2, 

then for every set W C P(h,  X)UQ(h, X) with card W = k+3, one has sep W < c. 

CLAIM: J~ R,r contains an open and dense subset of lC. 

Let Ao E IC and A > 0 be arbitrary. It suffices to prove that there exists 

A1 E K: and # > 0 such that 

(5.1) B(A1, tz) C B(Ao, ,k) n MR,~. 

Take a finite set A', x(A0, A') < A/4 and put H '  = span(H U A'). Apply 

Corollary 4.4 with respect to H ~, in the role of the space E 8 , and H as a subspace 

of H ~, to obtain A1 E K:, x(A r, A1) < A/4, such that for every h E H 

(5.2) card(P(h,  A1) U Q(h, A1) ) <_ k + 2. 
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However, (5.2) remains true also in the space E, and x(Ao, Az) < A/2. 

Now fix % 0 < 2 7 < min{e, sepA1}. Either map associating with every 

(h, X) �9 S x/C the sets P(h, X) and Q(h, X) is upper semi-continuous. Hence 

for each h �9 B[ho, R] N H there is 6(h) > 0 such that if 

X e B(A1,6(h)) and y �9 B(h, 6(h)) 

then 

(5.3) P(y, X) C P(h, A1) + B(8, 7), Q(y, X) c Q(h, A1) + B(8,'y). 

As B[h0, R] NH is compact, it is covered by a finite collection of balls B(hi, 6(hi)), 
i -- 1 , . . . , l .  

Take #, 0 < # < min{6(hl) , . . . ,6(hl) ,A/2}.  With this choice of #, (5.1) 

is fulfilled. In fact, let X E B(AI,#) and, for h E B[h0, R] n H, let W c 

P(h,X) UQ(h,X) be such that cardW = k + 3 .  Then for some j ,  1 < j < l, 

h e B(h 3, 6(hj)), and in view of (5.3), 

(5.4) W C (P(h, A1) U Q(h, At)) + B(0, 7). 

However, due to (5.2) and the choice of % the set on the left side of (5.4) is 

contained in a union of a finite number of not more than k + 2 pairwise disjoint 

balls. Hence, there are at least two elements, say x, y C P(h, X)UQ(h, X), which 

belong to one and the same ball. Then I x - Yl < 2")' < c, which proves the claim 

as x(A0, A1) < A/2 and # < A/2. Now set 

~n,m = {X E )~: Ca're(X) n H is dense in H}, 

fC n'm = {X E K:: On're(X) n H is dense in H}. 

In view of Proposition 3.1 and the claim, in order to complete the proof, it suffices 

to observe that 

N 
REN~-IEN 

Remark 5.2: It is proved in the previous proposition that for typical X C )~ 

the set ~n,m (X) M H is empty, provided n + m > dim H + 3 and H is finite- 

dimensional. 

The next theorem summarizes the main results in the paper: 
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THEOREM 5.3: Suppose E, d i m e  > 2, is either a finite-dimensional Euclidean 

space or a separable Hilbert space H, and H is an a~ne subspace of E. Then 

for every n , m  E N such that n + m - 2 ~ d i m H ,  and every typical compact 

set X E /C, the set C ~'m (X)  A H is dense in H. Moreover, if  H is of finite 

dimension, d i m H  -- k and n + m > k + 2 ,  then for a typical compact X E IC the 

upper common locus C'~ 'm(x)  does not meet H, thus X induces a partition of 

H, by means of its common loci, into a finite sequence of dense sets C *,3 (X) M H,  

i + j = 2 , . . . , k + 2 .  

oo Proof: Let n , m  E N, n + m - 2 _< d i m H ,  and let (Hi)~= 1 be a sequence of 

affine subspaces of H,  all of dimension n + m - 2, such that  Ui~l  H~ is dense in 

H.  Simple observations show that  Proposition 5.1 is true for the affine subspaces, 

thus for each Hi obtain a residual set )~:,m of compacta  so that  for every X E 
oo n,m 1C~ 'm the set C'~,m(Z) N Hi is dense in Hi. Then 1C~ m : [~=1 1C~ is residual 

in 1C and for every X E ~ ' ~  the set Ca're(X) is dense in H.  Finally, put 

1 C H : N ( ~ ' ~ : n ,  m C N ,  n + m  - 2 <_ d imH} .  

Every X E ~ H  satisfies the conclusion of the theorem, the set ]~H being residual 

in 1C. For the second part  of the theorem, refer also to Remark 5.2. I 

Assigning in Theorem 5.3 m : 1 or n : 1 respectively, one obtains as corollaries 

results about  common loci L ~ ( X ) a n d  L ~ ( X )  of typical compacta  X E ~:  

COROLLARY 5.4: With H and E as in Theorem 5.3 and n <_ dim H + I  (resp. m <_ 

d i m H +  1), for a typical compact X E IC the set L~p(X) N H  (resp. L '~(X)  N H )  

is dense in H. I f  in addition H is finite-dimensional, d i m H  = k, then also 

Lkp+2(X) M H (resp. L~+2(X) M H) is empty, hence a typical compact X E 1C 

induces a partition of H into a finite sequence of dense disjoint sets: L*p(X) M H, 

i = l , . . . , k + l  (resp. L3Q(X) MH, j =  l , . . . , k  + l).  

Although the metric projection part  of Corollary 5.4 is essentially contained in 

[BZ], this corollary brings new information for both  finite-dimensional Euclidean 

spaces and infinite-dimensional separable Hilbert spaces. 

A natural  question to ask is about the validity of some of the above results in 

spaces more general than Hilbert spaces. One could expect this is the case, at 

least for separable uniformly convex Banach spaces. A hint to that  might be the 

reference [BZh]. Also, it seems to us that  common (2, 2)-loci of typical compacta  

should be dense in any separable strictly convex Banach space. 
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